By Topic

Development and evaluation of a high-frequency ultrasound-based system for in vivo strain imaging of the skin

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vogt, M. ; Dept. of Electr. Eng. & Information Technol., Ruhr-Univ., Bochum, Germany ; Ermert, Helmut

The elastic properties of skin are of great interest in dermatology because they are affected by many pathological conditions. In this paper, a technique for in vivo mechanical strain imaging of the skin based on high-frequency ultrasound (HFUS) is presented. Elastic skin properties are assessed applying suction to the skin surface with a stepwise increased vacuum and estimating the resulting displacements in a spatially resolved manner. Acquired radio frequency (R-F) echo signals and their envelope are analyzed for this purpose. A computer-controlled vacuum system with a digital pressure control loop was developed for precise and reproducible deformation. In a first processing step, the skin surface is segmented. Local axial strains inside the skin are estimated from axial displacements, which are estimated from consecutive echo signal frames analyzing the phase of the complex cross correlation function of analytical echo signals. Furthermore, speckle tracking is applied to estimate axial and lateral displacements and to quantify axial and lateral strains. The correlation coefficient of windowed echo signals compensated for displacements are used as a measure to validate the estimated strains, which is essential to accomplish reliable in vivo measurements. Phantom experiments were performed to validate the proposed technique. Results of in vivo measurements are presented, showing the potential for mechanical strain imaging in the skin in vivo.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 3 )