By Topic

Time domain propagation measurements of the UWB indoor channel using PN-sequence in the FCC-compliant band 3.6-6 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ciccognani, W. ; Electron. Eng. Dept., Univ. of Rome Tor Vergata, Roma, Italy ; Durantini, A. ; Cassioli, D.

We have performed a propagation measurement campaign at the University of Rome Tor Vergata, Rome, Italy. We have sounded the channel by a probing signal at a carrier frequency of 4.78 GHz modulated by a train of pulses having a duration of 0.4 ns shaped by a pseudonoise (PN) sequence. The measurement band falls (3.6-6 GHz) in the frequency range allowed by the FCC ruling for ultrawide-band (UWB) operations. To characterize the channel behavior over the large and the small scale, the transmitter is moved in six different positions on the floor, while the receiver is moved in 625 different locations within each room. The receiver locations are arranged in a square grid of 25×25 points with 2 cm spacing, i.e., less than half of the minimum wavelength of the transmitted signal. A total of 625×16 impulse responses are recorded in nonline-of-sight (NLOS) conditions, 625 in line-of-sight (LOS) conditions within the rooms and 11 LOS measurements are made in the corridor at incremental spacing of 1 m. We describe the measurement technique as well as the procedure by which we process the experimental data to extract the amplitude, phase and delay associated to each component of the multipath profiles. We also derive path-loss and shadowing models for the UWB indoor channel in both LOS and NLOS conditions. Finally, we present an accurate analysis of the time dispersion of the UWB channel.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 4 )