By Topic

Efficiently searching the important input variables using Bayesian discriminant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, D. ; Dept. of Electron. Eng., City Univ. of Hong Kong, China ; Chow, T.W.S.

This paper focuses on enhancing feature selection (FS) performance on a classification data set. First, a novel FS criterion using the concept of Bayesian discriminant is introduced. The proposed criterion is able to measure the classification ability of a feature set (or, a combination of the weighted features) in a direct way. This guarantees excellent FS results. Second, FS is conducted by optimizing the newly derived criterion in a continuous space instead of by heuristically searching features in a discrete feature space. Using this optimizing strategy, FS efficiency can be significantly improved. In this study, the proposed supervised FS scheme is compared with other related methods on different classification problems in which the number of features ranges from 33 to over 12,000. The presented results are very promising and corroborate the contributions of this study.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 4 )