By Topic

Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shijun Xiao ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; A. M. Weiner ; C. Lin

We have developed a Fresnel diffraction analysis that provides an analytic expression for the passband response of virtually imaged phased-array (VIPA) demultiplexers. Our analysis shows that although the passband can be inherently symmetric, a strong asymmetry can develop when the output plane is detuned longitudinally. The symmetric passband has the minimum -3 dB transmission bandwidth. We also identify a spatial chirp effect that arises when the passband becomes asymmetric. Our theoretical predictions are confirmed via experiment. The experimental results include a demonstration of a hyperfine wavelength demultiplexing response with 10 pm (1.25 GHz) -3 dB transmission bandwidth.

Published in:

Journal of Lightwave Technology  (Volume:23 ,  Issue: 3 )