By Topic

Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
W. N. Ye ; Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada ; D. -X. Xu ; S. Janz ; P. Cheben
more authors

We demonstrate that stress engineering is an effective tool to modify or eliminate polarization dispersion in silicon-on-insulator (SOI) waveguide devices, for a wide range of waveguide cross-section shapes and dimensions. The stress-induced effects on the modal birefringence of SOI waveguides are investigated numerically and experimentally. Finite-element simulations show that while the birefringence of ridge waveguides with both slanted and vertical sidewalls can be effectively modified using cladding stress, the birefringence becomes much less sensitive to dimension fluctuations with decreasing sidewall slope. To efficiently simulate the stress-induced effects we propose a normalized plane-strain model which can achieve comparable accuracy as a fully generalized plane-strain model but requires significantly less computational resources. Excellent agreement is achieved between the calculated and measured birefringence tuning using SiO2 cladding induced stress. Finally, both calculations and experiments confirm that cladding induced stress can be used to eliminate the birefringence in SOI waveguides of arbitrary shapes, for typical SiO2 film stress values (σfilm≈-100 to -300 MPa) and cladding thicknesses of the order of 1 μm or less.

Published in:

Journal of Lightwave Technology  (Volume:23 ,  Issue: 3 )