Cart (Loading....) | Create Account
Close category search window

Small-signal analysis of amplitude-, phase-, and polarization-to-intensity conversion in general optical linear systems with application to PMD compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bononi, A. ; Dipt. di Ingegneria dell''Informazione, Univ. di Parma, Italy ; Orlandini, A.

A general small-signal model for amplitude-, phase-, and polarization-to-intensity conversion in optical systems affected by chromatic dispersion, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) is presented, which extends a previous scalar model by Wang and Petermann . The model leads to simple intensity filters, which can be expressed as a linear combination of the components of the Stokes' vector of the signal input state of polarization (ISOP), and facilitates the prediction of the ISOPs, which minimize/maximize the intensity modulation on the output signal. The model is first used to study the output intensity in a first-order PMD-compensated single-channel system with either input amplitude, or phase, or polarization modulation. The small-signal model provides a good prediction of the received intensity up to modulation indexes of about 20%-30%, according to the modulation type. The model is then successfully used in a semianalytical bit-error rate (BER) evaluation method to estimate the system penalty induced by cross-phase modulation (XPM) in a two-channel wavelength-division-multiplexed (WDM) dispersion-managed system with PMD compensation.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 3 )

Date of Publication:

March 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.