Cart (Loading....) | Create Account
Close category search window

The FTΛ-FRΛ AWG network: a practical single-hop metro WDM network for efficient uni- and multicasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fan, C. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Adams, S. ; Reisslein, M.

Single-hop wavelength-division-multiplexed (WDM) networks with a central passive star coupler (PSC), as well as single-hop networks with a central arrayed-waveguide grating (AWG) and a single transceiver at each node, have been extensively studied as solutions for the quickly increasing amounts of unicast and multicast traffic in the metropolitan area. The main bottlenecks of these networks are the lack of spatial wavelength reuse in the studied PSC-based networks and the single transceiver in the studied AWG-based metro WDM networks. This paper describes the development and evaluation of the FTΛ-FRΛ AWG network, which is based on a central AWG and has arrays of fixed-tuned transmitters and receivers at each node. Transceiver arrays are a mature technology, making the proposed network practical. In addition, the transmitter arrays allow for high-speed signaling over the AWG while the receiver arrays relieve the receiver bottleneck arising from multicasting in conjunction with spatial wavelength reuse on the AWG. The results from probabilistic analysis and simulation reported here indicate that the FTΛ-FRΛ AWG network gives particularly good throughput-delay performance for a mix of unicast and multicast traffic.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 3 )

Date of Publication:

March 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.