By Topic

Short-term load forecasting using an artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, K.Y. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Cha, Y.T. ; Park, J.H.

An artificial neural network (ANN) method is applied to forecast the short-term load for a large power system. The load has two distinct patterns: weekday and weekend-day patterns. The weekend-day pattern includes Saturday, Sunday, and Monday loads. A nonlinear load model is proposed and several structures of an ANN for short-term load forecasting were tested. Inputs to the ANN are past loads and the output of the ANN is the load forecast for a given day. The network with one or two hidden layers was tested with various combinations of neurons, and results are compared in terms of forecasting error. The neural network, when grouped into different load patterns, gives a good load forecast

Published in:

Power Systems, IEEE Transactions on  (Volume:7 ,  Issue: 1 )