By Topic

Measuring human readability of machine generated text: three case studies in speech recognition and machine translation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jones, D. ; Lincoln Lab., MIT, Lexington, MA, USA ; Gibson, E. ; Shen, W. ; Granoien, N.
more authors

We present highlights from three experiments that test the readability of current state-of-the art system output from: (1) an automated English speech-to-text (SST) system; (2) a text-based Arabic-to-English machine translation (MT) system; and (3) an audio-based Arabic-to-English MT process. We measure readability in terms of reaction time and passage comprehension in each case, applying standard psycholinguistic testing procedures and a modified version of the standard defense language proficiency test for Arabic called the DLPT*. We learned that: (1) subjects are slowed down by about 25% when reading system STT output; (2) text-based MT systems enable an English speaker to pass Arabic Level 2 on the DLPT*; and (3) audio-based MT systems do not enable English speakers to pass Arabic Level 2. We intend for these generic measures of readability to predict performance of more application-specific tasks.

Published in:

Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on  (Volume:5 )

Date of Conference:

18-23 March 2005