By Topic

A branch and bound approach to speed up the sphere decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stojnic, M. ; California Inst. of Technol., Pasadena, CA, USA ; Vikalo, H. ; Hassibi, B.

In many communications applications, maximum-likelihood decoding reduces to solving an integer least-squares problem which is NP hard in the worst-case. However, as has recently been shown, over a wide range of dimensions and SNRs, the sphere decoder can be used to find the exact solution with an expected complexity that is roughly cubic in the dimension of the problem. However, the computational complexity becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. We target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoder. The search tree is pruned by computing lower bounds on the possible optimal solution as we proceed down the tree. We observe a trade-off between the computational complexity required to compute the lower bound and the size of the pruned tree: the more effort spent computing a tight lower bound, the more branches that can be eliminated in the tree. Thus, even though it is possible to prune the search tree (and hence the number of points visited) by several orders of magnitude, this may be offset by the computations required to perform the pruning. All of which suggests the need for computationally-efficient tight lower bounds. We present three different lower bounds (based on spherical-relaxation, polytope-relaxation and duality), simulate their performances and discuss their relative merits.

Published in:

Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on  (Volume:3 )

Date of Conference:

18-23 March 2005