By Topic

LVQ-based video object segmentation through combination of spatial and color features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mochamad, H. ; Graduate Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan ; Hui Chien Loy ; Aoki, T.

This paper proposes semi-automatic video object segmentation using learning vector quantization (LVQ). For each video frame, we use 5-D feature vectors whose components are spatial information in pixel coordinates and color information in YUV color space. First, the object of interest and its background are defined with human assistance. Both the object of interest and its background are then used to train LVQ codebook vectors to approximate the object shape. Next, the LVQ codebook vectors are used to segment the object of interest automatically for subsequent frames. We introduce a variable weight K for scaling 5-D vector to adjust the balance between spatial and color information for accurate segmentation. Experimental results show that the proposed algorithm is useful for tracking an object moving at moderate speed.

Published in:

TENCON 2004. 2004 IEEE Region 10 Conference  (Volume:A )

Date of Conference:

21-24 Nov. 2004