Cart (Loading....) | Create Account
Close category search window
 

Analysing the robustness of cellular rhythms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Autonomous oscillations at the cellular level are important for various timing and signalling functions. The rhythms depend on environmental influences in a specific manner. In particular, the period of some rhythms has been shown to be very robust to certain environmental factors whereas other rhythms show a high sensitivity towards these factors. It is discussed that the robustness of the systems towards environmental changes results from underlying design principles. However, a comparison of robustness properties of different rhythms is lacking. Here we analyse the sensitivity of the oscillatory period with respect to parameter variations in models describing oscillations in calcium signalling, glycolysis and the circadian system. By comparing models for the same and different rhythms it is shown that the sensitivity depends on the oscillatory mechanism rather than the details of the model description. In particular, we find models of calcium oscillations to be very sensitive, those for glycolytic oscillations intermediately sensitive and models for circadian rhythms very robust. The results are discussed with respect to the temperature dependency of the rhythms. The question of what impact design principles have on the robustness of an oscillator, is addressed more explicitly by a direct comparison of systems with positive and negative feedback regulation for various reaction chain lengths. We find that the systems with negative feedback are more robust than corresponding systems with positive feedback. An increase in the length of the reaction chain under regulation leads to a decrease in sensitivity.

Published in:

Systems Biology, IEE Proceedings  (Volume:2 ,  Issue: 1 )

Date of Publication:

14 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.