By Topic

Monte Carlo filtering for multi target tracking and data association

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Vermaak ; Dept. of Eng., Cambridge Univ., UK ; S. J. Godsill ; P. Perez

We present Monte Carlo methods for multi-target tracking and data association. The methods are applicable to general nonlinear and non-Gaussian models for the target dynamics and measurement likelihood. We provide efficient solutions to two very pertinent problems: the data association problem that arises due to unlabelled measurements in the presence of clutter, and the curse of dimensionality that arises due to the increased size of the state-space associated with multiple targets. We develop a number of algorithms to achieve this. The first, which we refer to as the Monte Carlo joint probabilistic data association filter (MC-JPDAF), is a generalisation of the strategy proposed by Schulz et al. (2001) and Schulz et al. (2003). As is the case for the JPDAF, the distributions of interest are the marginal filtering distributions for each of the targets, but these are approximated with particles rather than Gaussians. We also develop two extensions to the standard particle filtering methodology for tracking multiple targets. The first, which we refer to as the sequential sampling particle filter (SSPF), samples the individual targets sequentially by utilising a factorisation of the importance weights. The second, which we refer to as the independent partition particle filter (IPPF), assumes the associations to be independent over the individual targets, leading to an efficient component-wise sampling strategy to construct new particles. We evaluate and compare the proposed methods on a challenging synthetic tracking problem.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:41 ,  Issue: 1 )