By Topic

Emission management for low probability intercept sensors in network centric warfare

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
V. Krishnamurthy ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada

Sensor platforms with active sensing equipment such as radars may betray their existence, by emitting energy that can be intercepted by enemy surveillance sensors thereby increasing the vulnerability of the whole combat system. To achieve the important tactical requirement of low probability of intercept (LPI) requires dynamically controlling the emission of platforms. In this paper we propose computationally efficient dynamic emission control and management algorithms for multiple networked heterogenous platforms. By formulating the problem as a partially observed Markov decision process (POMDP) with an on-going multi-armed bandit structure, near optimal sensor management algorithms are developed for controlling the active sensor emission to minimize the threat posed to all the platforms. Numerical examples are presented to illustrate these control/management algorithms.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:41 ,  Issue: 1 )