Cart (Loading....) | Create Account
Close category search window
 

Beam-waveguide antenna performance predictions with comparisons to experimental results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bathker, D.A. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Veruttipong, W. ; Otoshi, Tom Y. ; Cramer, P., Jr.

An overview of a NASA/JPL antenna project, with specific focus on the methodology used to predict the microwave performance of a 34-m-diameter beam-waveguide (BWG) reflector antenna, designated DSS 13, is given. Microwave performance predictions are given, as well as a summary of test results for the antenna, which has Cassegrain and centerline BWG operating models at X-band (8.450-GHz) and Ka-band (32-GHz) frequencies. Predictions were used to identify critical and poorly understood areas needing further study and diagnostic testing, and assisted in planning, scheduling, and evaluating the final results of a detailed test program. Predictions were assembled for all known losses that contribute to antenna performance degradation. It was found that predictions and experimental results agreed reasonably well for beam-peak gain and corresponding efficiency, and for several (but not all) noise temperatures

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:40 ,  Issue: 6 )

Date of Publication:

Jun 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.