By Topic

Space-time spreading and block coding for correlated fading channels in the presence of interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaodong Cai ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Giannakis, G.B. ; Zoltowski, M.D.

We consider point-to-point wireless links with multiple antennas in the presence of interference, and exploit channel's spatial correlation and the temporal covariance of the interference to design multiantenna transmitters. We develop a space-time spreading scheme that maximizes average signal-to-interference-and-noise ratio, and an optimally power-loaded space-time beamforming (STBF) scheme which improves error-probability performance. In order to increase transmission rates, we combine orthogonal space-time block coding with STBF, optimize power loading across beams, and develop low-complexity receivers. Optimal training for least-squares error channel estimation, and STBF for minimum mean-square error channel estimation, are also studied. Our analytical and simulated results corroborate that STBF with optimal power loading can considerably reduce error probability and channel-estimation errors.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 3 )