By Topic

Effect of channel-estimation error on QAM systems with antenna diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bin Xia ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, China ; Jiangzhou Wang

This paper studies the effect of channel estimation error and antenna diversity on multilevel quadrature amplitude modulation (M-QAM) systems over Rayleigh fading channels. Based on the characteristic function method, a general closed-form bit-error rate (BER) for M-QAM systems is presented. The effect of the inaccurate channel estimation on the performance for pilot-symbol-assisted modulation M-QAM systems with antenna diversity is investigated. Simulation results for M-QAM (M = 4, 16, 64, 256, etc.) show that the analytical method can accurately estimate the system performance. Moreover, numerical results show that with the antenna-diversity technique, the BER performance improves significantly, especially in perfect channel-estimation cases. It is also found that the channel-estimation error limits the benefit of antenna diversity. By increasing the length of the channel estimator and the amplitude of the pilot symbol, more accurate channel estimation can be achieved, so that the BER performance is improved.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 3 )