Cart (Loading....) | Create Account
Close category search window
 

Application of a sinusoidal internal model to current control of three-phase utility-interface converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fukuda, S. ; Graduate Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo, Japan ; Imamura, R.

Three-phase voltage-source converters are used as utility interfaces. In such a case, the converter line currents are required to track sinusoidal references synchronized with the utility grid without a steady-state error. In this paper a current control method based on a sinusoidal internal model is employed. The method uses a sine transfer function with a specified resonant frequency, which is called an S regulator. The combination of a conventional proportional-integral (PI) regulator and an S regulator is called a PIS regulator. The PIS regulator ensures that the steady-state error in response to any step changes in a reference signal at the resonant frequency and 0 Hz reduces to zero. An experiment was carried out using a 1-kVA prototype of three utility-interface converters, a voltage-source rectifier, an active power filter, and static synchronous compensator. Almost perfect current-tracking performance could be observed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:52 ,  Issue: 2 )

Date of Publication:

April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.