By Topic

Active filtering function of three-phase PWM boost rectifier under different line voltage conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
M. Cichowlas ; Inst. of Control & Ind. Electron., Warsaw Univ. of Technol., Poland ; M. Malinowski ; M. P. Kazmierkowski ; D. L. Sobczuk
more authors

Slight hardware and algorithm modifications as well as a higher power ratio of a three-phase pulsewidth-modulation (PWM) rectifier make compensation of neighboring nonlinear power load possible. The active filtering function enlarges the functionality of PWM rectifiers, which decreases the cost of additional installation of compensating equipment. It gives a chance to fulfill both shunt active filter (SAF) and PWM rectifier tasks in a multidrive system by one advanced converter. Thanks to the idea of virtual flux, the direct power control space-vector-modulated (DPC-SVM) and new synchronous double reference frame phase-locked loop approach, the control system is resistant to a majority of line voltage disturbances. This assures proper operation of the system for abnormal and failure grid conditions. Simulation and experimental results have proven excellent performance and verify the validity of the proposed system.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:52 ,  Issue: 2 )