By Topic

Optimization of corona electrode position in roll-type electrostatic separators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
A. Samuila ; Electron. & Electrostatics Res. Unit, LAII-ESIP, Angouleme, France ; A. Urs ; A. Iuga ; R. Morar
more authors

The position of the corona electrode(s) is known to be a key factor of electrostatic separation efficiency, as it influences both the charging conditions of the granular materials on the surface of the roll electrode connected to the ground, and the magnitude of the electric forces exerted on the particles. Response surface methodology was employed for the design of the experiments performed on a laboratory roll-type corona-electrostatic separators, with samples of chopped electric wire wastes typically processed by such techniques. The results of the electrostatic separation tests are discussed in relation to the data obtained from two other experiments, in which corona current and particle charge measurements were performed for various positions of the standard wire-type electrode. The conclusions of this study enabled the formulation of several recommendations for the improvement of the outcome of industrial separation processes (i.e., maximize the weight percentage as well as the purity of the recovered materials).

Published in:

IEEE Transactions on Industry Applications  (Volume:41 ,  Issue: 2 )