By Topic

Microwave electrothermal propulsion for space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. L. Power ; NASA Lewis Res. Center, Cleveland, OH, USA

The microwave electrothermal thruster (MET) is attractive for medium- or high-power spacecraft propulsion. A propellant gas is heated by passing it through a microwave plasma discharge created in a resonant cavity by tuning either the TM(011) or the TM(012) mode for impedance-matched operation. The MET is electrodeless, synergistically combines high pressure and high power capability, provides external control over the energy-conversion discharge, and operates on hydrogen propellant. Upwards of 95% efficiency has been reported. Calculations of potential MET performance are reported. Apparatus for testing the MET to power levels of 30 kW at 915 MHz is described. The low-ripple operation of the microwave generator has been verified, as has a procedure for starting the microwave discharge and raising the power applied to the cavity. Impedance-matched resonant operation of the microwave cavity has been achieved

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:40 ,  Issue: 6 )