By Topic

Novel approaches to the measurement of arterial blood flow from dynamic digital X-ray images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rhode, K.S. ; Div. of Imaging Sci., King''s Coll. London, UK ; Lambrou, T. ; Hawkes, D.J. ; Seifalian, A.M.

We have developed two new algorithms for the measurement of blood flow from dynamic X-ray angiographic images. Both algorithms aim to improve on existing techniques. First, a model-based (MB) algorithm is used to constrain the concentration-distance curve matching approach. Second, a weighted optical flow algorithm (OP) is used to improve on point-based optical flow methods by averaging velocity estimates along a vessel with weighting based on the magnitude of the spatial derivative. The OP algorithm was validated using a computer simulation of pulsatile blood flow. Both the OP and the MB algorithms were validated using a physiological blood flow circuit. Dynamic biplane digital X-ray images were acquired following injection of iodine contrast medium into a variety of simulated arterial vessels. The image data were analyzed using our integrated angiographic analysis software SARA to give blood flow waveforms using the MB and OP algorithms. These waveforms were compared to flow measured using an electromagnetic flow meter (EMF). In total 4935 instantaneous measurements of flow were made and compared to the EMF recordings. It was found that the new algorithms showed low measurement bias and narrow limits of agreement and also out-performed the concentration-distance curve matching algorithm (ORG) and a modification of this algorithm (PA) in all studies.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 4 )