Cart (Loading....) | Create Account
Close category search window
 

Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cebral, J.R. ; Sch. of Comput. Sci., George Mason Univ., Fairfax, VA, USA ; Lohner, R.

The simulation of blood flow past endovascular devices such as coils and stents is a challenging problem due to the complex geometry of the devices. Traditional unstructured grid computational fluid dynamics relies on the generation of finite element grids that conform to the boundary of the computational domain. However, the generation of such grids for patient-specific modeling of cerebral aneurysm treatment with coils or stents is extremely difficult and time consuming. This paper describes the application of an adaptive grid embedding technique previously developed for complex fluid structure interaction problems to the simulation of endovascular devices. A hybrid approach is used: the vessel walls are treated with body conforming grids and the endovascular devices with an adaptive mesh embedding technique. This methodology fits naturally in the framework of image-based computational fluid dynamics and opens the door for exploration of different therapeutic options and personalization of endovascular procedures.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 4 )

Date of Publication:

April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.