By Topic

Operator dependence of 3-D ultrasound-based computational fluid dynamics for the carotid bifurcation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Glor, F.P. ; Cardiovascular Mech. & Biolluid Dynamics Res. Unit, Univ. Gent, Belgium ; Ariff, B. ; Hughes, A.D. ; Verdonck, P.R.
more authors

The association between vascular wall shear stress (WSS) and the local development of atherosclerotic plaque makes estimation of in vivo WSS of considerable interest. Three-dimensional ultrasound (3DUS) combined with computational fluid dynamics (CFD) provides a potentially valuable tool for acquiring subject-specific WSS, but the interoperator and intraoperator variability associated with WSS calculations using this method is not known. Here, the accuracy, reproducibility and operator dependence of 3DUS-based computational fluid dynamics were examined through a phantom and in vivo studies. A carotid phantom was scanned and reconstructed by two operators. In the in vivo study, four operators scanned a healthy subject a total of 11 times, and their scan data were processed by three individuals. The study showed that with some basic training, operators could acquire accurate carotid geometry for flow reconstructions. The variability of measured cross-sectional area and predicted shear stress was 8.17% and 0.193 N/m2 respectively for the in vivo study. It was shown that the variability of the examined parameters was more dependent on the scan operators than the image processing operator. The range of variability of geometrical and flow parameters reported here can be used as a reference for future in vivo studies using the 3DUS-based CFD approach.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 4 )