By Topic

Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Niederhauser, J.J. ; Inst. of Appl. Phys., Univ. of Bern, Switzerland ; Jaeger, M. ; Lemor, R. ; Weber, P.
more authors

In optoacoustic imaging, short laser pulses irradiate highly scattering human tissue and adiabatically heat embedded absorbing structures, such as blood vessels, to generate ultrasound transients by means of the thermoelastic effect. We present an optoacoustic vascular imaging system that records these transients on the skin surface with an ultrasound transducer array and displays the images online. With a single laser pulse a complete optoacoustic B-mode image can be acquired. The optoacoustic system exploits the high intrinsic optical contrast of blood and provides high-contrast images without the need for contrast agents. The high spatial resolution of the system is determined by the acoustic propagation and is limited to the submillimeter range by our 7.5-MHz linear array transducer. A Q-switched alexandrite laser emitting short near-infrared laser pulses at a wavelength of 760 nm allows an imaging depth of a few centimeters. The system provides real-time images at frame-rates of 7.5 Hz and optionally displays the classically generated ultrasound image alongside the optoacoustic image. The functionality of the system was demonstrated in vivo on human finger, arm and leg. The proposed system combines the merits and most compelling features of optics and ultrasound in a single high-contrast vascular imaging device.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 4 )