By Topic

On rate-constrained distributed estimation in unreliable sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ishwar, P. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Rohit Puri ; Ramchandran, K. ; Pradhan, S.S.

We study the problem of estimating a physical process at a central processing unit (CPU) based on noisy measurements collected from a distributed, bandwidth-constrained, unreliable, network of sensors, modeled as an erasure network of unreliable "bit-pipes" between each sensor and the CPU. The CPU is guaranteed to receive data from a minimum fraction of the sensors and is tasked with optimally estimating the physical process under a specified distortion criterion. We study the noncollaborative (i.e., fully distributed) sensor network regime, and derive an information-theoretic achievable rate-distortion region for this network based on distributed source-coding insights. Specializing these results to the Gaussian setting and the mean-squared-error (MSE) distortion criterion reveals interesting robust-optimality properties of the solution. We also study the regime of clusters of collaborative sensors, where we address the important question: given a communication rate constraint between the sensor clusters and the CPU, should these clusters transmit their "raw data" or some low-dimensional "local estimates"? For a broad set of distortion criteria and sensor correlation statistics, we derive conditions under which rate-distortion-optimal compression of correlated cluster-observations separates into the tasks of dimension-reducing local estimation followed by optimal distributed compression of the local estimates.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:23 ,  Issue: 4 )