By Topic

Effect of cable load impedance on coupling schemes for MV power line communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Coupling of carrier wave frequencies up to 95 kHz (within the European CENELEC A-band) for online diagnostic data transfer in medium voltage cables is studied. Inductive and capacitive signal coupling is considered not only on basis of technical performance, but also on basis of practical aspects. The effectiveness of coupling schemes depends on the impedances of substation equipment at the cable terminals. The frequency response of a 10-kV, 400-kVA three-phase cast resin distribution transformer is investigated. In the frequency range of interest, the behavior is well described by a capacitance of typically 1 nF. The signal transfer over a 4-km paper cable, terminated by various load impedances to mimic real equipment is studied. From the results it is concluded that for inductive coupling performance within the CENELEC A-band may be sufficient, except for substations at the end of a grid. Transferring signals containing frequencies up to several megahertz, which is already required for synchronization of partial discharge detection and location equipment, is feasible under all conditions. Measurements on life substations indicate that up to these frequencies substation components can still be accurately modeled as lumped circuit impedances.

Published in:

Power Delivery, IEEE Transactions on  (Volume:20 ,  Issue: 2 )