By Topic

3-D reconstruction of a dynamic environment with a fully calibrated background for traffic scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Muller, K. ; Fraunhofer Inst. for Telecommun., Heinrich-Hertz-Inst., Berlin, Germany ; Smolic, A. ; Drose, M. ; Voigt, P.
more authors

Vision-based traffic surveillance systems are more and more employed for traffic monitoring, collection of statistical data and traffic control. We present an extension of such a system that additionally uses the captured image content for 3-D scene modeling and reconstruction. A basic goal of surveillance systems is to get a good coverage of the observed area with as few cameras as possible to keep the costs low. Therefore, the 3-D reconstruction has to be done from only a few original views with limited overlap and different lighting conditions. To cope with these specific restrictions we developed a model-based 3-D reconstruction scheme that exploits a priori knowledge about the scene. The system is fully calibrated offline by estimating camera parameters from measured 3-D-2-D correspondences. Then the scene is divided into static parts, which are modeled offline and dynamic parts, which are processed online. Therefore, we segment all views into moving objects and static background. The background is modeled as multitexture planes using the original camera textures. Moving objects are segmented and tracked in each view. All segmented views of a moving object are combined to a 3-D object, which is positioned and tracked in 3-D. Here we use predefined geometric primitives and map the original textures onto them. Finally the static and dynamic elements are combined to create the reconstructed 3-D scene, where the user can freely navigate, i.e., choose an arbitrary viewpoint and direction. Additionally, the system allows analyzing the 3-D properties of the scene and the moving objects.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:15 ,  Issue: 4 )