By Topic

Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Soo-Yong Shin ; Sch. of Comput. Sci. & Eng., Seoul Nat. Univ., South Korea ; In-Hee Lee ; Dongmin Kim ; Byoung-Tak Zhang

DNA computing relies on biochemical reactions of DNA molecules and may result in incorrect or undesirable computations. Therefore, much work has focused on designing the DNA sequences to make the molecular computation more reliable. Sequence design involves with a number of heterogeneous and conflicting design criteria and traditional optimization methods may face difficulties. In this paper, we formulate the DNA sequence design as a multiobjective optimization problem and solve it using a constrained multiobjective evolutionary algorithm (EA). The method is implemented into the DNA sequence design system, NACST/Seq, with a suite of sequence-analysis tools to help choose the best solutions among many alternatives. The performance of NACST/Seq is compared with other sequence design methods, and analyzed on a traveling salesman problem solved by bio-lab experiments. Our experimental results show that the evolutionary sequence design by NACST/Seq outperforms in its reliability the existing sequence design techniques such as conventional EAs, simulated annealing, and specialized heuristic methods.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 2 )