By Topic

Capacity and error probability analysis for orthogonal space-time block codes over fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hao Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, BC, Canada ; Gulliver, T.A.

The capacity and error probability of orthogonal space-time block codes (STBCs) are considered for pulse-amplitude modulation/phase shift keying/quadrature-amplitude modulation (PAM/PSK/QAM) in fading channels. The approach is based on an equivalent scalar additive white Gaussian noise channel with a channel gain proportional to the Frobenius norm of the matrix channel for the STBC. Using this effective channel, capacity and probability of error expressions are derived for PSK/PAM/QAM modulation with space-time block coding. Rayleigh-, Ricean-, and Nakagami-fading channels are considered. As an application, these results are extended to obtain the capacity and probability of error for a multiuser direct sequence code-division multiple-access system employing space-time block coding.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 2 )