By Topic

Performance analysis of linear precoding based on field trials results of MIMO-OFDM system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sampath, H. ; Qualcomm Inc., San Diego, CA, USA ; Erceg, V. ; Paulraj, A.

We use field trial results obtained from a multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) wireless system with two transmitter and three receiver antennas (2×3), to first validate the properties of the transmit correlation matrix in a macro-cellular environment. We find that approximately 20% of the locations have well-defined transmit correlation matrices. Furthermore, the eigenvectors of the transmit correlation matrix vary slowly over distance with 60% of the locations having eigenvector variation of less than 1 dB over a distance of 20 m. Next, we quantify the performance of the optimal statistical linear precoding (OSLP) , and statistical one-dimensional (1-D) eigenbeamforming (SEB) based on transmit correlation matrices, and the 1-D eigenbeamforming (EB)-based on perfect channel knowledge at the transmitter. We find that the OSLP and SEB schemes obtain array gain over the Alamouti scheme at lower signal-to-noise ratio (SNR) with a median gain of 2.0 (1.5) dB at the 1.0-(3.5) km cell-radii. However, the SEB scheme (unlike the OSLP scheme) looses diversity order at higher SNR that leads to a performance loss. The EB scheme provides the best performance over the Alamouti scheme, at the expense of increased feedback requirements.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 2 )