By Topic

A hybrid finite element/method of moment formulation for single frequency eddy current inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wismer, M.G. ; Dept. of Electr. Eng., Worcester Polytech. Inst., MA, USA ; Ludwig, R.

Eddy-current inverse techniques using single-frequency currents have been applied with limited success to the reconstruction of crack width and thickness profiles primarily for one-dimensional and axisymmetric geometries. Because of the diffusive nature of the induced low-frequency eddy currents, the reconstruction process differs from high-frequency wave propagation methods. On the physical basis that both diffusive and wave phenomena can be described by the same Green's function with either a complex or real wave number, an integral formulation for the low-frequency magnetic vector potential is presented. By employing an iterative Born approximation algorithm and the method of moments, a reconstruction method for the conductivity profile in a metallic specimen is developed. To make this formulation amenable to complex geometries, finite-element analysis techniques are utilized to compute the integral kernel. The inversion process is tested with synthetic data generated by the numerical solution of a generic embedded flaw in a full-space and a surface-breaking defect

Published in:

Magnetics, IEEE Transactions on  (Volume:28 ,  Issue: 3 )