By Topic

Design for suppression of gate-induced drain leakage in LDD MOSFETs using a quasi-two-dimensional analytical model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. A. Parke ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; J. E. Moon ; H. C. Wann ; P. K. Ko
more authors

A systematic study of gate-induced drain leakage (GIDL) in single-diffusion drain (SD), lightly doped drain (LDD), and fully gate-overlapped LDD (GOLD) NMOSFETs is described. Design curves quantifying the GIDL dependence on gate oxide thickness, phosphorus dose, and spacer length are presented. In addition, a new, quasi-2-D analytical model is developed for the electric field in the gate-to-drain overlap region. This model successfully explains the observed GIDL dependence on the lateral doping profile of the drain. Also, a technique is proposed for extracting this lateral doping profile using the measured dependence of GIDL current on the applied substrate bias. Finally, the GIDL current is found to be much smaller in lightly doped LDD devices than in SD or fully overlapped LDD devices, due to smaller vertical and lateral electric fields. However, as the phosphorus dose approaches 1014/cm2, the LDD and fully overlapped LDD devices exhibit similar GIDL current

Published in:

IEEE Transactions on Electron Devices  (Volume:39 ,  Issue: 7 )