By Topic

Partial discharge monitoring of power transformers using UHF sensors. Part I: sensors and signal interpretation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Judd, M.D. ; Inst. of Energy & Environ., Strathclyde Univ., Glasgow, UK ; Li Yang ; Hunter, I.B.B.

Determining whether power transformers are suffering from internal arcing or dangerous levels of partial discharge (PD) is important because failure without warning can result in damage to neighboring equipment, customer dissatisfaction, disruption to economic activity, and the imposition of regulatory fines. This paper provides an overview of the excitation of UHF signals by PD inside transformers. The use of externally mounted sensors has been outlined, and the structure of a dielectric window that can be constructed on an inspection hatch has been outlined. Attenuation of UHF signals propagating inside a transformer tank has been shown to be relatively low. A new approach to locating PD sources in three dimensions has been presented, based on using a numerical model of the transformer materials, which defines electromagnetic propagation velocities on a mesh of 5-cm sub-cells. The concepts of the propagation-velocity matrix (PVM) and the propagation-time matrix (PTM) were thereby introduced. Once the PD source has been located to a specific region of the transformer, the PVM might be used to index a database of physical descriptions of the transformer that could provide additional information to assist with diagnosis.

Published in:

Electrical Insulation Magazine, IEEE  (Volume:21 ,  Issue: 2 )