Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Two-Layer multistate Markov model for modeling a 1.8 GHz narrow-band wireless propagation channel in urban Taipei city

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsin-Piao Lin ; Inst. of Comput. & Commun., Nat. Taipei Univ. of Technol., Taiwan ; Ming-Jian Tseng

An accurate propagation channel model is crucial for evaluating the performance of a communication system. A propagation channel can be described by a Markov model with a finite number of states, each of which is considered to be quasi-stationary over a short period. This work proposes a two-layer multistate Markov model. Instead of a large Markov transition matrix used in a conventional single-layer Markov model, two small Markov transition matrices are employed by a two-layer Markov model to reduce the computational complexity of the model without increasing the memory requirements. The proposed approach characterizes the multiplicative processes of a propagation channel as shadowing and fast fading. Each type of fading is considered as several channel states and each of the states corresponds to a specific mixed Rayleigh-lognormal distribution. Numerical results reveal that the statistical properties of the simulated data are quite close to those obtained from the measurements; indeed, the proposed two-layer Markov model is more accurate and less complex, and requires less memory than the single-layer Markov model. Furthermore, the proposed two-layer Markov model enables the fading statistics and error probability performance of a quadrature phase-shift keying modulation scheme in a typical urban Taipei environment to be more accurately predicted. Besides, it can easily be applied to similar environmental scenarios.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:54 ,  Issue: 2 )