By Topic

Axiomatic geometry of conditional models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lebanon, G. ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA

We formulate and prove an axiomatic characterization of the Riemannian geometry underlying manifolds of conditional models. The characterization holds for both normalized and nonnormalized conditional models. In the normalized case, the characterization extends the derivation of the Fisher information by Cencov while in the nonnormalized case it extends Campbell's theorem. Due to the close connection between the conditional I-divergence and the product Fisher information metric, we provides a new axiomatic interpretation of the geometries underlying logistic regression and AdaBoost

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 4 )