By Topic

Self-consistent Simulation of self-pulsating two-section gain-coupled DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Mumin, M.A. ; Coll. of Technol. Studies, Shuwaikh, Kuwait ; Guifang Li

The role of cavity conditions in the dynamics of two-section gain-coupled distributed feedback (DFB) lasers is investigated using a self-consistent model. Self-sustained pulsation (SSP) exists only for devices with strongly coupled DFB gratings. As the coupling strength increases, multiple SSP regimes are developed. The SSP frequency tuning range increases as cavity length decreases. The frequency and modulation index predicted by the model agree well with experimental results. The facet condition of each section is found to affect SSP differently because of the asymmetrical behavior of the modes responsible for SSP.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:41 ,  Issue: 4 )