By Topic

A multiobjective genetic approach for system-level exploration in parameterized systems-on-a-chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ascia, G. ; Dipt. di Ingegneria Informatica e delle Telecomunicazioni, Univ. di Catania, Italy ; Catania, V. ; Palesi, M.

This paper deals with a significant problem affecting embedded system design methods based on parameterized systems on a chip (SOCs). It proposes a strategy for exploration of the configuration space of a parameterized SOC architecture to determine an accurate approximation of the power/performance Pareto-front. The strategy is based on genetic algorithms and is thoroughly evaluated in terms of accuracy, efficiency, and scalability using SOC platforms that differ as regards both architectural model and complexity. The results obtained show that the proposed approach gives an excellent approximation of the Pareto-optimal front in very short exploration times (up to two orders of magnitude shorter than those required by one of the best known and widely referenced approaches in the literature). In addition, our approach possesses a good degree of scalability as performance levels are maintained even when the architectural complexity increases.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )