By Topic

The Y architecture for on-chip interconnect: analysis and methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hongyu Chen ; Dept. of Comput. Sci. & Eng., Univ. of California, La Jolla, CA, USA ; Chung-Kuan Cheng ; A. B. Kahng ; I. I. Mandoiu
more authors

The Y architecture for on-chip interconnect is based on pervasive use of 0°, 120°, and 240° oriented semiglobal and global wiring. Its use of three uniform directions exploits on-chip routing resources more efficiently than traditional Manhattan wiring architecture. This paper gives in-depth analysis of deployment issues associated with the Y architecture. Our contributions are as follows. 1) We analyze communication capability (throughput of meshes) for different interconnect architectures using a multicommodity flow approach and a Rentian communication model. Throughput of the Y architecture is largely improved compared to the Manhattan architecture, and is close to the throughput of the X architecture. 2) We improve existing estimates for the wirelength reduction of various interconnect architectures by taking into account the effect of routing-geometry-aware placement. 3) We propose a symmetrical Y clock tree structure with better total wire length compared to both H and X clock tree structures, and better path length compared to the H tree. 4) We discuss power distribution under the Y architecture, and give analytical and SPICE simulation results showing that the power network in Y architecture can achieve (8.5%) less IR drop than an equally resourced power network in Manhattan architecture. 5) We propose the use of via tunnels and banks of via tunnels as a technique for improving routability for Manhattan and Y architectures.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:24 ,  Issue: 4 )