By Topic

Efficient asynchronous bundled-data pipelines for DCT matrix-vector multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tugsinavisut, S. ; Electr. Eng. Dept., Univ. of Southern California, Los Angeles, CA, USA ; Youpyo Hong ; Daewook Kim ; Kyeounsoo Kim
more authors

This paper demonstrates the design of efficient asynchronous bundled-data pipelines for the matrix-vector multiplication core of discrete cosine transforms (DCTs). The architecture is optimized for both zero and small-valued data, typical in DCT applications, yielding both high average performance and low average power. The proposed bundled-data pipelines include novel data-dependent delay lines with integrated control circuitry to efficiently implement speculative completion sensing. The control circuits are based on a novel control-circuit template that simplifies the design of such nonlinear pipelines. Extensive post-layout back-end timing analysis was performed to gain confidence in the timing margins as well as to quantify performance and energy. Comparison with a synchronous counterpart suggests that our best asynchronous design yields 30% higher average throughput with negligible energy overhead.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )