By Topic

VLSI architectural design tradeoffs for sliding-window log-MAP decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chien-Ming Wu ; Chip Implementation Center, Nat. Appl. Res. Labs., Hsinchu, Taiwan ; Ming-Der Shieh ; Chien-Hsing Wu ; Yin-Tsung Hwang
more authors

Turbo codes have received tremendous attention and have commenced their practical applications due to their excellent error-correcting capability. Investigation of efficient iterative decoder realizations is of particular interest because the underlying soft-input soft-output decoding algorithms usually lead to highly complicated implementation. This paper describes the architectural design and analysis of sliding-window (SW) Log-MAP decoders in terms of a set of predetermined parameters. The derived mathematical representations can be applied to construct a variety of VLSI architectures for different applications. Based on our development, a SW-Log-MAP decoder complying with the specification of third-generation mobile radio systems is realized to demonstrate the performance tradeoffs among latency, average decoding rate, area/computation complexity, and memory power consumption. This paper thus provides useful and general information on practical implementation of SW-Log-MAP decoders.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:13 ,  Issue: 4 )