By Topic

Multimodality tomography for multiphase hydrocarbon flow measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. T. Hjertaker ; Dept. of Phys. & Technol., Univ. of Bergen, Norway ; S. -A. Tjugum ; E. A. Hammer ; G. A. Johansen

Multimodality sensing is used for monitoring of multiphase hydrocarbon flow where there is a need to measure the quantity of oil, water and gas in a cross section of a pipe originating from an oil well. Information on the flow regime, i.e., the physical distribution of the hydrocarbon production constituents in the pipe cross section, is demanded. Expedient information concerning the productivity of the well, i.e., the quantity of oil, water and gas produced, the transport of multiphase flow and the upstream separation process can be provided by tomographic information. A dual modality tomograph (DMT), consisting of capacitance and gamma-ray sensors, has been developed at the University of Bergen. Characterization of the DMT has demonstrated feasibility in relation to the hydrocarbon flow application, but also shortcomings mainly relating to the performance of the capacitance sensor in water continuous phase, and the salinity dependence of the gamma-ray measurements. Research work has been conducted to further develop the DMT for hydrocarbon multiphase flow. The new developments include dual modality densitometry (DMD), where both mixture density and salinity are measured, and a water-cut independent high-frequency magnetic field sensor.

Published in:

IEEE Sensors Journal  (Volume:5 ,  Issue: 2 )