By Topic

A constant-frequency method for improving light-load efficiency in synchronous buck converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mulligan, M.D. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Broach, B. ; Lee, T.H.

The low-voltage synchronous rectifier buck topology suffers from low efficiency at light loads due to dissipation that does not scale with load current. In this paper we present a method for improving light-load efficiency in synchronous buck converters by reducing gate drive losses. We propose a new gate drive technique whereby the gate voltage swing dynamically scales with load current such that gate drive loss is traded for conduction loss. Since conduction losses scale with the square of load current, an optimal gate swing exists that, at light loads, is shown to be less than the supply voltage. Using this method we obtain a 6.25% increase in converter efficiency at a load current of 10 mA and operating at a constant switching frequency of 2 MHz.

Published in:

Power Electronics Letters, IEEE  (Volume:3 ,  Issue: 1 )