By Topic

A Web surfer model incorporating topic continuity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pal, S.K. ; Machine Intelligence Unit., Indian Stat. Inst., Calcutta, India

This paper describes a surfer model which incorporates information about topic continuity derived from the surfer's history. Therefore, unlike earlier models, it captures the interrelationship between categorization (context) and ranking of Web documents simultaneously. The model is mathematically formulated. A scalable and convergent iterative procedure is provided for its implementation. Its different characteristic features, as obtained from the joint probability matrix, and their significance in Web intelligence are mentioned. Experiments performed on Web pages obtained from WebBase confirm the superiority of the model.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 5 )