System Maintenance Notice:
Single article purchases and IEEE account management are currently unavailable. We apologize for the inconvenience.
By Topic

An instruction-level distributed processor for symmetric-key cryptography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Elbirt, A.J. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Lowell, MA, USA ; Paar, C.

Efficient implementation of block ciphers is critical toward achieving both high security and high-speed processing. Numerous block ciphers have been proposed and implemented, using a wide and varied range of functional operations. Existing architectures such as microcontrollers do not provide this broad range of support. Therefore, we will present a hardware architecture that achieves efficient block cipher implementation while maintaining flexibility through reconfiguration. In an effort to achieve such a hardware architecture, a study of a wide range of block ciphers was undertaken to develop an understanding of the functional requirements of each algorithm. This study led to the development of COBRA, a reconfigurable architecture for the efficient implementation of block ciphers. A detailed discussion of the top-level architecture, interconnection scheme, and underlying elements of the architecture will be provided. System configuration and on-the-fly reconfiguration will be analyzed, and from this analysis, it will be demonstrated that the COBRA architecture satisfies the requirements for achieving efficient implementation of a wide range of block ciphers that meet the 622 Mbps ATM network encryption throughput requirement.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )