Cart (Loading....) | Create Account
Close category search window
 

An instruction-level distributed processor for symmetric-key cryptography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elbirt, A.J. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Lowell, MA, USA ; Paar, C.

Efficient implementation of block ciphers is critical toward achieving both high security and high-speed processing. Numerous block ciphers have been proposed and implemented, using a wide and varied range of functional operations. Existing architectures such as microcontrollers do not provide this broad range of support. Therefore, we will present a hardware architecture that achieves efficient block cipher implementation while maintaining flexibility through reconfiguration. In an effort to achieve such a hardware architecture, a study of a wide range of block ciphers was undertaken to develop an understanding of the functional requirements of each algorithm. This study led to the development of COBRA, a reconfigurable architecture for the efficient implementation of block ciphers. A detailed discussion of the top-level architecture, interconnection scheme, and underlying elements of the architecture will be provided. System configuration and on-the-fly reconfiguration will be analyzed, and from this analysis, it will be demonstrated that the COBRA architecture satisfies the requirements for achieving efficient implementation of a wide range of block ciphers that meet the 622 Mbps ATM network encryption throughput requirement.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.