By Topic

Constructing associative memories using high-order neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tseng, Y.-H. ; Nat. Taiwan Univ., Taipei, Taiwan ; Wu, J.-L.

A class of neural network for constructing associative memories that learn the memory patterns as well as their neighbouring patterns is presented. The network is basically a layer of perceptrons with high-order polynomials as their discriminant functions. A learning algorithm is proposed for the network to learn arbitrary bipolar patterns. The simulation results show that the associative memories implemented in this way achieve a set of desirable characteristics, namely high storage capacity, nearest convergence, and existence of a 'no decision' state which attracts indistinguishable inputs. Furthermore, it is also possible to shape the attraction basin of a memory pattern under any metrics definition of distance.

Published in:

Electronics Letters  (Volume:28 ,  Issue: 12 )