By Topic

Fault Recovery Designs for Processor-Embedded Distributed Storage Architectures with I/O-Intensive DB Workloads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Fault recovery has become an essential capability for systems that process large data-intensive workloads. Processor-embedded distributed storage architectures offload user-level processing to the peripheral from the host servers. Our earlier work investigated the performance benefits of such architectures for disk- and MEMS-based smart storage devices. In this paper, we focus on the issue of fault recovery. We propose recovery schemes for TPC-H based workloads, and evaluate several recovery scenarios applicable to both disk- and MEMS-based smart storage architectures.

Published in:

Mass Storage Systems and Technologies, 2005. Proceedings. 22nd IEEE / 13th NASA Goddard Conference on

Date of Conference:

11-14 April 2005