Cart (Loading....) | Create Account
Close category search window

Mining ratio rules via principal sparse non-negative matrix factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chenyong Hu ; Inst. of Software, Chinese Acad. of Sci., Beijing, China ; Benyu Zhang ; Shuicheng Yan ; Qiang Yang
more authors

Association rules are traditionally designed to capture statistical relationship among itemsets in a given database. To additionally capture the quantitative association knowledge, Korn et al. (1998) proposed a paradigm named ratio rules for quantifiable data mining. However, their approach is mainly based on principle component analysis (PCA) and as a result, it cannot guarantee that the ratio coefficient is nonnegative. This may lead to serious problems in the rules' application. In this paper, we propose a method, called principal sparse nonnegative matrix factorization (PSNMF), for learning the associations between itemsets in the form of ratio rules. In addition, we provide a support measurement to weigh the importance of each rule for the entire dataset.

Published in:

Data Mining, 2004. ICDM '04. Fourth IEEE International Conference on

Date of Conference:

1-4 Nov. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.