Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Bottom-up generalization: a data mining solution to privacy protection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ke Wang ; Simon Fraser Univ., Burnaby, BC, Canada ; Yu, P.S. ; Chakraborty, S.

The well-known privacy-preserved data mining modifies existing data mining techniques to randomized data. In this paper, we investigate data mining as a technique for masking data, therefore, termed data mining based privacy protection. This approach incorporates partially the requirement of a targeted data mining task into the process of masking data so that essential structure is preserved in the masked data. The idea is simple but novel: we explore the data generalization concept from data mining as a way to hide detailed information, rather than discover trends and patterns. Once the data is masked, standard data mining techniques can be applied without modification. Our work demonstrated another positive use of data mining technology: not only can it discover useful patterns, but also mask private information. We consider the following privacy problem: a data holder wants to release a version of data for building classification models, but wants to protect against linking the released data to an external source for inferring sensitive information. We adapt an iterative bottom-up generalization from data mining to generalize the data. The generalized data remains useful to classification but becomes difficult to link to other sources. The generalization space is specified by a hierarchical structure of generalizations. A key is identifying the best generalization to climb up the hierarchy at each iteration. Enumerating all candidate generalizations is impractical. We present a scalable solution that examines at most one generalization in each iteration for each attribute involved in the linking.

Published in:

Data Mining, 2004. ICDM '04. Fourth IEEE International Conference on

Date of Conference:

1-4 Nov. 2004