By Topic

Vectorizing and querying large XML repositories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Vertical partitioning is a well-known technique for optimizing query performance in relational databases. An extreme form of this technique, which we call vectorization, is to store each column separately. We use a generalization of vectorization as the basis for a native XML store. The idea is to decompose an XML document into a set of vectors that contain the data values and a compressed skeleton that describes the structure. In order to query this representation and produce results in the same vectorized format, we consider a practical fragment of XQuery and introduce the notion of query graphs and a novel graph reduction algorithm that allows us to leverage relational optimization techniques as well as to reduce the unnecessary loading of data vectors and decompression of skeletons. A preliminary experimental study based on some scientific and synthetic XML data repositories in the order of gigabytes supports the claim that these techniques are scalable and have the potential to provide performance comparable with established relational database technology.

Published in:

Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on

Date of Conference:

5-8 April 2005